Table 2. Five-fold cross-validation result comparison to other ML models with all features
| Matrix, mean (SD) |
Model | Accuracy | Specificity | Sensitivity | Balanced accuracy | AUROC |
XGB | 0.6429(0.0050) | 0.6421(0.0052) | 0.7048(0.0151) | 0.6734(0.0051) | 0.7298(0.0051) |
GBM | 0.6590(0.0065) | 0.6585(0.0067) | 0.7007(0.0093) | 0.6796(0.0051) | 0.7388(0.0050) |
LGBM | 0.6542(0.0066) | 0.6535(0.0066) | 0.7069(0.0086) | 0.6802(0.0055) | 0.7401(0.0055) |
Random forest | 0.6232(0.0208) | 0.6220(0.0212) | 0.7191(0.0099) | 0.6706(0.0064) | 0.7284(0.0043) |
AdaBoost | 0.6434(0.0032) | 0.6427(0.0033) | 0.6982(0.0152) | 0.6705(0.0077) | 0.7259(0.0065) |
LR | 0.6460(0.0017) | 0.6448(0.0019) | 0.7363(0.0175) | 0.6906(0.0082) | 0.7538(0.0091) |
GBM + LGBM | 0.6565(0.0052) | 0.6559(0.0053) | 0.7043(0.0080) | 0.6801(0.0050) | 0.7395(0.0052) |
GBM + LR | 0.6952(0.0038) | 0.6953(0.0039) | 0.6857(0.0178) | 0.6905(0.009) | 0.7529(0.0079) |
LGBM + LR | 0.6823(0.0038) | 0.682(0.0039) | 0.6996(0.0164) | 0.6908(0.0081) | 0.7530(0.0080) |
GBM + LGBM + LR | 0.6892(0.0046) | 0.6893(0.0047) | 0.6879(0.0152) | 0.6886(0.0076) | 0.7503(0.0072) |
Abbreviations: SD, standard deviation; AUROC, area under receiver of characteristics; XGB, XGBoost; GBM, gradient boosting machine; LGBM, light gradient-boosting machine; AdaBoost, adaptive boosting; LR, logistic regression.
The bold characters were the best-performance model.