Table 3. Model performance analysis of LGBM + LR double-ensemble model with weight values
wall | wex_age | Accuracy, mean (SD) | Specificity, mean (SD) | Sensitivity, mean (SD) | Balanced accuracy, mean (SD) | AUROC, mean (SD) |
1.0 | 0.0 | 0.6823(0.0038) | 0.682(0.0039) | 0.6996(0.0164) | 0.6908(0.0081) | 0.753(0.0080) |
0.9 | 0.1 | 0.6866(0.0037) | 0.6865(0.0038) | 0.6955(0.0166) | 0.691(0.0082) | 0.7538(0.0079) |
0.7 | 0.3 | 0.6962(0.0031) | 0.6964(0.0033) | 0.6861(0.0182) | 0.6912(0.0086) | 0.7541(0.0076) |
0.5 | 0.5 | 0.706(0.0027) | 0.7064(0.0028) | 0.6743(0.0137) | 0.6903(0.0064) | 0.7519(0.0072) |
0.3 | 0.7 | 0.7111(0.0029) | 0.7118(0.0030) | 0.6585(0.0131) | 0.6851(0.0056) | 0.7461(0.0066) |
0.1 | 0.9 | 0.7082(0.0036) | 0.7091(0.0038) | 0.6424(0.0140) | 0.6757(0.0056) | 0.7355(0.0059) |
0.0 | 1.0 | 0.7041(0.0041) | 0.705(0.0043) | 0.6356(0.0120) | 0.6703(0.0043) | 0.7286(0.0056) |
Abbreviations: AUROC, area under receiver of characteristics; LGBM, light gradient-boosting machine; LR, logistic regression.
The bold characters were the best-performance model.