Table 4. Comparison of the prediction performances of the prediction models on the testing dataset (n=209,860)

Model Accuracy Specificity Sensitivity Balanced accuracy AUROC
The final double-ensemble model 0.6933 0.6933 0.691 0.6922 0.7538
GBM + LGBM 0.6529 0.6523 0.7004 0.6764 0.7421
GBM + LR 0.6925 0.6926 0.6845 0.6886 0.7530
LGBM + LR 0.6791 0.6788 0.7004 0.6896 0.7533
GBM + LGBM + LR 0.6851 0.6851 0.6853 0.6852 0.7513
Abbreviations: AUROC, area under receiver of characteristics; XGB, XGBoost; GBM, gradient boosting machine; LGBM, light gradient-boosting machine; AdaBoost, adaptive boosting; LR, logistic regression.